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MATHEMATICAL MODELS IN ECOLOGY:

THE ROLE OF CRITICAL REGIMES

A. M. Molchanov

Introduction

Ecology is one of the most complex biological
disciplines. And ecosystems, of all the Systems with
which one deals in science, are among the most difficult
to study. The dimensions of the problem are vividly
demonstrated by the fact that only in the twentieth
century has it become possible to pose the question of
ecosystem study.

Any ecosystem consists of both biotic and abiotic
elements. Thus ecosystem study is impossible without direct
participation of the sciences of geology and geography in
describing and investigating geological, topographical,
hydrographical and climaﬁic characteristics. So too the
tools of chemistry and physics are absolutely necessary
(and, unfortunately, completely insufficient) to study the
constituent eléments of an ecosystem's abiotic component.
For study of the sum and substance of any ecosystem--animals,
plants and microorganisms--the entire complex of all
biological sciences must be employed.

Nor can one manage in the study of ecosystems without

the socio-~economic sciences, since the basic goal of ecology



is use of the biosphere for the needs of mankind. A mankind,
I might add, which strives to rise above its role as a
self-centered consumer, and seeks to understand its task

as guardian of the biosphere. The interaction of ecosystems
with a rapidly growing technology which urgently needs the
multitude of raw materials it draws from these systems--
this is not a simple problem. On the other hand the notion
of the danger of irrevocable environmental pdllution has
already become a paradoxical platitude.

The mathematical sciences also have a role in the study
of this important problem. One may, for example, point to
statistical methods for quantitative evaluation of ecosystem
structures; to the systems approach for description and
classification of the multiform internal and external
linkages of ecosystems; and to the more traditional studies
of how systems change on both an evolutionary time scale
and on a successional one.

This quick summary gives an idea of the full magnitude
of this problem. One cannot help but wonder, "Is today's
science, consisting as it does of almost entirely disconnected
divisions, ready to solve such multifaceted complex
problems?" To this ore may only note that life itself has
presented this problem, and a "natural" solution would cost

mankind and the biosphere dearly. The best procedure



apparently is to single out the most pressing, crucial

problems for study.

Properties of Biological Systems

To isolate correctly the main approaches to research
and modeling in ecology, a clear understanding of the
specific features of biological systems is essential.
Broadly speaking, one may point to four paramount features
of living things: (1) the complexity of internal structure
of each separate individual; (2) the multifaceted nature
of the external environment (the conditions under which
vital activity takes place); (3) the open nature of
biological systems, as regards energy as well as structure
and information; (4) intrinsic non-linearity--the tremendous
range of external parameters within which the viability of
systems is maintained. Let us now make a few observations

concerning each of these points.

1. Complexity of internal structure

This section might just as well be entitled "Respect
for the biological system.” Any complete description of
even the simplest biological system requires the full sum
of knowledge accumulated in the "pre-biological" natural
sciences. Let us explicate this idea with a simple

example. It is common in the popular literature while



flattering mankind's collective vanity to point out that
nature never got around to "inventing" the wheel. Yet if
one understands as the "principle of the wheel" the idea
of replacing slipping friction with rolling friction, then
any walking, jumping, or running animal realizes this
principle far more subtly than the inefficient and awkward
device we call the wheel. 1In a more far-reaching sense,
with regard to cyclic energy transformation processes,
nature "invented" the magnificent "chemical wheel," whose
transformation of chemical into mechanical energy may be
observed in any muscle contraction. For now, a man-made
equivalent of such an energy converter is no more than a
dream.

From a purely mathematical.point of view, complexity
in a system's structure means that in order to describe
it or represent its structure, the values of many state
variables must be assigned. In the language of mathematics
this may be put as follows: the phase space of a biological

system i1s multi-dimensional.

2. Multi-faceted nature of the external environment

Biological systems are complex not only internally.
They function in a complex, often rapidly changing
environment. Moreover, there are solid grounds for

believing that the very complexity of their structure



possesses a ¢ompensatory character. They are complex
precisely so that, responding to any external impact,
internal defense reactions develop which preserve internal
structure to the maximum. Especially well protected, of
course, is the genetic hereditary structure. One may say
of today's complexity for any given individual that it is
the accumulated stock of "experience in interacting with
its enviornment" for that individual's "mother," "grandmother,"
and "great-great . . . grandmother."

Mathematical consequence: a model of a biological
system should contain many parameters (continuous and
discrete) assigning the complex environment in which the

given system functions.

3. The open nature of biological systems

Biological systems are never closed as regards energy--
even school children know this nowadays. There are even
more subtle aspects of this important property, however.
Thus, for example, most higher plants have the leaf as their
organ of photosynthesis. But at the same time, in the winter
in the temperate zone trees shed their leaves, which then
become part of the surrounding environment. An even more
intricate interaction with the surrounding environment is
manifestéd by insects which pass through larval and pupal

stages. This feature of living things may be termed



"morphological, structural openness.” Examples of
informational openness are obvious, say, the "chemical
intercourse" among social insects. And from this proceeds
the fundamental (even if unhappy for the mathematical
modeler) conélusion: i1t 18 necessary to jointly model
both a biological system and the environment in which it

functions.

4. Intrinsic non-linearity

The range of variation for conditions under which
biological systems usually operate (consider, for example,
organs of sight and hearing), is significantly greater than,
say, that of laboratory or industrial equipment used in
measuring amplitudes and frequencies. For the purposes of
many theories in physics, a linear approximation that
describes small deviations from a state of equilibrium is
fully effective. Taking into account quadratic terms
usually significantly increases the exactness of such a
model. The need to introduce non-linearity of a higher
degree infrequently arises in the "pre-biological" natural
sciences.

An enﬁirely different situation exists in biology.
Here it is insufficient to introduce polynomial terms of
no matter how high an order. Non-linearity in biology is

of an exponential character. The clearest expression of



this is the Weber-Fechner Law in physiology which
establishes the logarithmic dependence of a reaction on

an action. The evolutionary significance of such powerful
non-linearity is quite easily understood: one must be able
to hear the rustle of an approaching snake and not be
blinded by nearby lightning. Those biological systems

not able to embrace the enormous range of environmental
impacts relevant to their existence simply bécome extinct,
having lost the battle for existence. On their graves one
might write: "They were too linear for this world." And
the same fate, as well, awaits mathematical models which

fail to take into account this important feature of life.

Complex Pre-Biological Systems. The Limits of Computer

Technoiogy
There areisystems in the natural sciences for which

sufficiently complete mathematical models have been built.
Thus celestial mechanics predicts planetary movements with
all the precision which modern observation techniques

have at their disposal. 1In this sense one may speak of an
exact model of a phenomenon. In the other extreme we have
the case of quantum mechanics and its description of atomic
structure. In principle there is no reason to doubt that

Schroedinger's wave equation describes the behavior of



molecules with great accuracy, at least in the case of
small molecules such as the benzene ring, CGHG'

On the basis of this example it is possible to
graphically demonstrate the limits of computer technology.
Let us consider what it would require to compute an extremely
simple quantum mechanical model for benzene--Schroedinger's
equation for 24 electrons. We will take only 4 valence
electrons for each of the 6 carbon atoms, dispensing with
the inner (paired) electrons and ignoring the motion of
nuclei. Even with such simplification one gets an equation
in partial derivatives for the y function which depends on
72 variables. Applying standard computational methods let
us use a difference scheme carrying out to only 10 places
(and this is not very many; one should go to at least 100)
for each of the variables. In all we get an impressive
number: N = 1072.

To get an idea of the enormous magnitude of this
number one should note that modern computers complete not
more than a billion (n = 109) operations per second.
Supposing that engineers succeed in increasing computer

18

speed by a billion times (n = 10 operations per second).

Even at this (at present) fantastic speed, a time, T = 1054
seconds, would be required in order to take a single step

in the computation of a benzene ring using direct methods.



This is unimaginably longer than the lifetime of the

i.e.: T>>T, = 50109 years = 1.5-1017 seconds.

Zarth, T 6
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Exact, Approximate and Elementary Models

Direct computation by computer of exact models of
varibus phenomena is, of course, unrealizable not only in
biology but in other fields as well. In biology, however,
this fact is very often apparent. This in ndé way is to
say that exact models are useless. It does, however,
presume the need for close, reciprocal ties between pure
and applied mathematics. A good approximate model often
dramatically reduces computational workloads. In this
regard, quantum chemistry is nothing other than an
approximation method for solving Schroedinger's equation
for molecules. Quantum chemistry permits one to calculate
the most important (usually energetic) characteristics
of less complex but sufficiently representative molecules
and radicals. Although we are not able to find the solution
of an exact gquantum mechanical problem, knowledge of
Schroedinger's exact equation permits theoretical evaluation
of any approximate soclution.

An exact, granted it be even extremely complex,
mathematical model of a phenomenon permits the construction

of approximate models which answer special questions. Here
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occurs a kind of "emancipation" of theory from experiment.
Experiment, of course, continues to have the final word.
But suitably designed systems of models can empower "King
Experiment" to yield an unambiguous, "unclouded" answer.
Thus the coriectness of quantum mechanics need not be
verified at the molecular level. The theory is verified
on an elementary system (here, the atom) and by means of
sufficiently simple and exact experiments.

Moralyfor the mathematician: spectial and marginal
cases of a theory are important not only in their own
right, but as a means of verifying experimentally detatled,

exact models.

Is an Axiomatic Approach to Biology Possible?

Until recently the development of mathematics has
been stimulated largely by the needs of mechanics, physics,
and engineering. The expression has even become current,
"exact natural sciences." And it is precisely in this
narrow scienﬁific framework that the axiomatic ideal for
the developmeht of science has been formulated. The
essence of this ideal is the establishment (even if only
experimentally) of basic postulates and the subsequent
strict logical construction of all remaining theory. Its

crystallization as a concept can be traced in the entire
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history of the natural sciences as a developing social
and intellectual force. 1Its attractiveness is obvious.
Only a comparatively small number of postulates are
submitted to meticulous refinement and scrupulous
experimental verification. Their corollaries {models

of specific phenomena) automatically improve as the
postulates are refined. The most perspicuous, classical
manifestation of this ideal is Hellenic (Euclidian)
geometry. And significantly more complex is ﬁhe axiomatic
structure of the next major achievement in scientific
thought--celestial mechanics. Here the role of axiom is
played by motion equations based on the law of universal
gravitation. And, although not all corollaries are
cbvious (as, for example, the "three body problem" which
to this day has not had a satisfactory solution), never-
theless any motion can be found without difficulty using
present-day means of computation.

Still more complex are the axioms of guantum mechanics,
whose basic postulate--Schroedinger's equation--is an
eguation in partial derivatives. Here exact solutions are
-ossible only in the most simple (although also the most
important) cases, and purely computational methods, as
~as already mentioned, are extremely time-consuming and

Zor now unrealizable.
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All this apparently shows that the axiomatic ideal is,
unfortunately, applicable only for the "pre-biological"
natural sciences. However, this unhappy conclusion relates
only to biology taken as a whole. It is beyond all question
that its salient branches (and not necessarily those
paralleling its present subdivision into individual disci-
plines) not only ecan, but should be structured along
axiomatic lines. Below are some considerations in favor

of this idea.

"Hierarchy" and the Small Parameter

In the last century the cell theory of animals and
plants was developed--probably the most onerous and funda-
mental step to "atomism" in biology; an historic move
forward in understanding hierarchical nature, and the
discreteness and discontinuity of life's forms. A
population consists of organisms. An organism consists of
cells. For all the fundamental difference between
populations and organisms, they nevertheless share a
profound similarity, one which in both instances allows
use of one and the same verb, "to consist of." The cells
of an organ (or tissue), of course, interact with one
another, yet intercellular ties are significantly weaker
than intracellular ones. Experimenters take advantage of

the comparative weakness of intercellular ties when they
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select external influences (mechanical, chemical, electrical
and so on) sufficiently strong to dissociate separate cells
within a tissue. It is significant that this can be
accomplishéd while preserving unharmed the structures and
functions of individual cells.

The ratio of the value of an influence which "dissociates"
(it is not important what this value may express--force,
acidity, voltage, or temperature) to the value of an
influence which "destroys" is, as mathematicians say, the
"dimensionless small parameter e€." Similarly, small parameters
characterize quantitatively the individuality of a cell in
its tissue. The generalization of this idea "upwards and
outwards" to biogeocoenoses and the biosphere, and also
"downward and inwards" to cell organelles and macromolecules,
is obvious. It is impossible to over-emphasize the signifi-
zznce of this remarkable peculiarity of living things for

%e effective application of mathematical methods in biology.

leighboring Levels

Mathematics deals with the same reality as all other
~ztural sciences. There are distinctions, however, between
methods, approaches, and points of view. Mathematics more
>Zten studies the ties, relationships, and analogies
cetween phenomena rather than the actual embodiment or

realization of these phenomena. This inevitably involves
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a loss in specificity--a loss, on the other hand, which is
compensated for many times over by a gain in generality
and number of épplications. An ichthyologist, for instance,
who is forecasting the population size of a certain species
of fish usually works on the population level, never
"descending" to the molecular level nor "rising" to the
level of the biosphere. This possibility to ignore
neighboring (whether above or below) levels has a general
character and is closely tied with the idea of the small
parameter, or more precisely the idea of two small
parameters with kinetic and temporal interpretations.

The surrounding environment may be held to be almost
constant and uniform: it varies quite slowly within the
temporal and spatial scales characteristic for the system
under study. And with this fact we see another--a kinetic--
aspect of the small parameter, of the measure of individuality.
The internal environment of a system may also be considered
constant, or more exactly, dependent only on essential
variables which describe the given system. However the
reason for this fact is in a certain sense paradoxical.
Sub-units (for example, individuals in a population or
cells in an individual) move, undergo change, oscillate
so rapidly that only average values of these variables
have meaning. The most profound expression of this idea

is found in the well-known theorem of Tikhonov regarding
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equations with a small parameter in a higher derivative.
Its special applications, however, were apparently
formulated independently: for example, the 'steady-state
concentrations method" in chemical kinetics.

Is it worth "beating upon an unlocked door" and
attempting to "prove mathematically" the feasibility of
scientific research within the confines of a single level?
Certainly it would not be worth it were it not for two
circumstances. Firstly, it 1s impossible to remain within
the confines of a single level: one must know the limits
sf applicability of any "single-level" scheme. It is
impossible, for instance, to understand the laws governing
the most important migrational phenomena only at the
population level without a physiological (and even
biochemical) analysis of stress factors. Mathematics
rnelps understand the general reasons for any "breach” of
z netghboring level--the loss of a given system's stability.
Zzeondly, mathematical analogies sometimes permit the
~odeling of a given phenomenon at another (more accessible
>z the experimenter) level. The mere mention of the
"avalance—like“ character of certain migrational processes

points to a possible physical model--an analogy.
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Critical Regimes, in Particular Oscillatory Ones

The complexity of biological phenomena is usually
very great. Even within the confines of a single level,
even "nullifying" all additional small parameters,
simplifying and dispensing with everything that it is
possible to simplify and dispense with, one seldom obtains
a transparent model. In such cases it can help to modify
the parameters of a model (or, better yet, of the conditions
of an experiment) so as to consciously and purpoéely bring
the system to the limits of its stability. In such
critical situations the number of essential variables
is usually not great, often only two. Of course with a
different set of conditions it would be possible to get an
entirely different pair (or more) of "critical variables,"
but nevertheless, if one manages to achieve a "line of
neutrality" or "boundary" the properties and structure
of a system will become largely clarified.

It is now possible using mathematical procedures
alone to find all conceivable types of kinetics for any
system which has attained such a critical situation. There
are the (well-known from the field of electronics) soft
and hard regimes for generating auto-oscillation. Also
possible are either a relaxation analogy of these regimes

(explosion or monomolecular decay) or a combination of
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these regimes {(for example, tissue differentiation in
embryogenesis). All these regimes, of course have been
well examined theoretically for a long time.

The essential point, however, is that with whatever
complex system one is dealing, the most simple losses
of stability for a steady-state regime will, without fail,
occur according to one of the four types indicated above.
Mathematical models of radioactive decay (the most
important example of a monomolecular reaction) or of the
operation of a thermionie oscillator--these are not spectal
cases, but typical representatives, canonical forms of the
most complex systems. It is clear how our respect for such
models must grow as we come to understand the significance

of this idea.

The Ecological Side of the Critical Regime Method

Ecological systems deal with objects for which it
would behoove one to categorically forbid the application
oZ those methods so sympathetically described in the
creceding section. Herein lies one of the major tenets
cf the entire ptogram "Man and the Biosphere"--learning
not to bring ecosystems to the edge of destruction. 1In
zhe same regard it is necessary to "drive" their models

t2 crisis states. "Know the edge and you won't fall off!"
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It is well known that no small number of ecosystems are
already in critical states (and by now it's unimportant
whether due to ignorance or some other cause). It is
necessary, therefore, to make the best of things and
direct ourselves to the immediate, careful, maximally
objective study of the problems and to judiciously intervene
in crisis situations. Thus eritical regime modeling methods
are most effective in precisely those situations where
modeling is the most necessary.

Systems analytic methods, the careful consideration
of all conceivable, multifaceted, hard-to-identify inter-
relationships, should be supplemented by quantitative
evaluation of the roles of these interrelationships.
Different models proceeding from different hypotheses as
regards essential variables should be compared with one
another, and the models' conclusions should be compared

with field data.

"Bottlenecks" and Regulation

Since Darwin's theory of evolution we hawve had a
rather clear picture of how regulatory mechanisms emerge.
The idea of the small parameter, which also came to light
independently in chemistry (and especially biochemistry)
under the name "reaction bottleneck," helps us to understand

the evolution of control systems, or at least some of them.
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Initially they are the "most exposed,” the "most vulnerable"
places or stages. Here a system either dies out (e.g., a
species) or it "takes into its own hands" control over the
bottleneck (aé, for example, in the case where an increase
in carbon dioxide gas concentrations stimulates a
respiratory center). In general, the checking of a

former "poisoning agent" and its gradual transformation

into "controlling agent" is, apparently, one-of the most
remarkable inventions of evolution.

Perhaps, then, one should leave everything to the
beneficial effects of time? This, of course, is one
conceivable course of action. The gquestion is only what
price the biosphere, mankind and, especially, civilization
would have to pay for a natural.regulation of the situation.
“nfortunately, in dealing with ecosystems we do not have
:volutionary time at our disposal. We must replace
zz2quential evolution with parallel analysis. 1f, however,
we wish (and we do wish!) that by the end of the analysis
there is something left to regulate, and, more importantly,
someone to do the regulating, then this analysis must

inevitably use models.



